CSEE 4119 Computer Networks

Chapter 2
Application (3/5)
Chapter 2: Application layer

- 2.1 Principles of network applications
- 2.2 Web and HTTP
 - Caching!
- 2.3 FTP
- 2.4 Electronic Mail
 - SMTP, POP3, IMAP
- 2.5 DNS
- 2.6 P2P applications
- 2.7 Socket programming with TCP
- 2.8 Socket programming with UDP
Web caches (proxy server)

Goal: satisfy client request without involving origin server

- User sets browser: Web accesses via cache
- Browser sends all HTTP requests to cache
 - Object in cache: Cache returns object
 - Else, cache requests object from origin server, then returns object to client
More about Web caching

- cache acts as both client and server
- typically cache is installed by ISP (university, company, residential ISP)

why Web caching?
- reduce response time for client request
- reduce traffic on an institution’s access link.
- Internet dense with caches: enables “poor” content providers to effectively deliver content (but so does P2P file sharing)
Caching example

assumptions

- average object size = 100,000 bits
- avg. request rate from institution’s browsers to origin servers = 15/sec
- delay from institutional router to any origin server and back to router = 2 sec

consequences

- utilization on LAN = 15%
- utilization on access link = 100%
- total delay = Internet delay + access delay + LAN delay
 = 2 sec + minutes + milliseconds
Caching example (cont)

possible solution
- increase bandwidth of access link to, say, 10 Mbps

consequence
- utilization on LAN = 15%
- utilization on access link = 15%
- Total delay = Internet delay + access delay + LAN delay
 = 2 sec + msecs + msecs
- often a costly upgrade
Caching example (cont)

possible solution:
- install cache

consequence
- suppose hit rate is 0.4
 - 40% requests will be satisfied almost immediately
 - 60% requests satisfied by origin server
- utilization of access link reduced to 60%, resulting in negligible delays (say 10 msec)
- total avg delay = Internet delay + access delay + LAN delay = .6*(2.01) secs + .4*milliseconds < 1.4 secs
Conditional GET

- **Goal:** don’t send object if cache has up-to-date cached version

- **Cache:** specify date of cached copy in HTTP request

 If-modified-since: `<date>`

- **Server:** response contains no object if cached copy is up-to-date:

 HTTP/1.0 304 Not Modified

- **HTTP request msg**

 If-modified-since: `<date>`

- **HTTP response**

 HTTP/1.0 304 Not Modified
Chapter 2: Application layer

- 2.1 Principles of network applications
- 2.2 Web and HTTP
- 2.3 FTP
- 2.4 Electronic Mail
 - SMTP, POP3, IMAP
- 2.5 DNS
- 2.6 P2P applications
- 2.7 Socket programming with TCP
- 2.8 Socket programming with UDP
DNS: Domain Name System

People: many identifiers:
- SSN, name, passport #

Internet hosts, routers:
- IP address (32 bit) - used for addressing datagrams
- “name”, e.g., www.yahoo.com - used by humans

Q: map between IP address and name, and vice versa?

Domain Name System:
- distributed database implemented in hierarchy of many name servers
- application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation)
 - note: core Internet function, implemented as application-layer protocol
 - complexity at network’s “edge”
DNS

DNS services
✓ hostname to IP address translation
✓ host aliasing
 ▪ Canonical, alias names
✓ mail server aliasing
✓ load distribution
 ▪ replicated Web servers: set of IP addresses for one canonical name

Why not centralize DNS?
✓ single point of failure
✓ traffic volume
✓ distant centralized database
✓ maintenance

doesn’t scale!
Distributed, Hierarchical Database

client wants IP for www.amazon.com; 1st approx:
- client queries a root server to find com DNS server
- client queries com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com
DNS: Root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

13 root name servers worldwide

- a Verisign, Dulles, VA
- b USC-ISI Marina del Rey, CA
- c Cogent, Herndon, VA (also LA)
- d U Maryland College Park, MD
- e NASA Mt View, CA
- f Internet Software C. Palo Alto, CA (and 36 other locations)
- g US DoD Vienna, VA
- h ARL Aberdeen, MD
- i Verisign, (21 locations)
- j Verisign, (21 locations)
- k RIPE London (also 16 other locations)
- l ICANN Los Angeles, CA
- m WIDE Tokyo (also Seoul, Paris, SF)
- n Autonomica, Stockholm (plus 28 other locations)
TLD and Authoritative Servers

Top-level domain (TLD) servers:
- responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for com TLD
- Educause for edu TLD

Authoritative DNS servers:
- organization’s DNS servers, providing authoritative hostname to IP mappings for organization’s servers (e.g., Web, mail).
- can be maintained by organization or service provider
Local Name Server

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one
 - also called “default name server”
- when host makes DNS query, query is sent to its local DNS server
 - acts as proxy, forwards query into hierarchy
DNS name resolution example

- host at cis.poly.edu wants IP address for gaia.cs.umass.edu

iterated query:
- contacted server replies with name of server to contact
- “I don’t know this name, but ask this server”
DNS name resolution example

recursive query:
- puts burden of name resolution on contacted name server
- heavy load?
DNS: caching and updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time
 - TLD servers typically cached in local name servers
 - Thus root name servers not often visited
- update/notify mechanisms proposed IETF standard
 - RFC 2136
DNS records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

Type=A
- name is hostname
- value is IP address

Type=NS
- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

Type=CNAME
- name is alias name for some “canonical” (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

Type=MX
- value is name of mailserver associated with name
DNS protocol, messages

DNS protocol: query and reply messages, both with same message format

msg header
- **identification**: 16 bit # for query, reply to query uses same #
- **flags**:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

<table>
<thead>
<tr>
<th>identification</th>
<th>flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of questions</td>
<td>number of answer RRs</td>
</tr>
<tr>
<td>number of authority RRs</td>
<td>number of additional RRs</td>
</tr>
<tr>
<td>questions (variable number of questions)</td>
<td></td>
</tr>
<tr>
<td>answers (variable number of resource records)</td>
<td></td>
</tr>
<tr>
<td>authority (variable number of resource records)</td>
<td></td>
</tr>
<tr>
<td>additional information (variable number of resource records)</td>
<td></td>
</tr>
</tbody>
</table>
DNS protocol, messages

Name, type fields for a query

RRs in response to query

records for authoritative servers

additional “helpful” info that may be used

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>identification</td>
<td>flags</td>
</tr>
<tr>
<td>number of questions</td>
<td>number of answer RRs</td>
</tr>
<tr>
<td>number of authority RRs</td>
<td>number of additional RRs</td>
</tr>
<tr>
<td>questions</td>
<td>(variable number of questions)</td>
</tr>
<tr>
<td>answers</td>
<td>(variable number of resource records)</td>
</tr>
<tr>
<td>authority</td>
<td>(variable number of resource records)</td>
</tr>
<tr>
<td>additional information</td>
<td>(variable number of resource records)</td>
</tr>
</tbody>
</table>
Inserting records into DNS

- example: new startup “Network Utopia”
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into com TLD server:
 - (networkutopia.com, dns1.networkutopia.com, NS)
 - (dns1.networkutopia.com, 212.212.212.1, A)

- create authoritative server Type A record for www.networkuptopia.com; Type MX record for networkutopia.com
- How do people get IP address of your Web site?
Chapter 2: Application layer

- 2.1 Principles of network applications
- 2.2 Web and HTTP
- 2.3 FTP
- 2.4 Electronic Mail
 - SMTP, POP3, IMAP
- 2.5 DNS

- Bonus:
 - a detour on CDN

- 2.6 P2P applications
- 2.7 Socket programming with TCP
- 2.8 Socket programming with UDP
Web caches (proxy server)

Goal: satisfy client request without involving origin server

- user sets browser: Web accesses via cache
- browser sends all HTTP requests to cache
 - object in cache: cache returns object
 - else cache requests object from origin server, then returns object to client
Content distribution networks (CDNs)

Content replication

- challenging to stream large files (e.g., video) from single origin server in real time
- solution: replicate content at hundreds of servers throughout Internet
 - content downloaded to CDN servers ahead of time
 - placing content “close” to user avoids impairments (loss, delay) of sending content over long paths
 - CDN server typically in edge/access network
Content distribution networks (CDNs)

Content replication

- CDN (e.g., Akamai) customer is the content provider (e.g., CNN)
- CDN replicates customers’ content in CDN servers.
- when provider updates content, CDN updates servers

origin server in North America

CDN distribution node

CDN server in S. America

CDN server in Europe

CDN server in Asia
CDN example

1. **origin server** (www.foo.com)
 - distributes HTML

2. **CDN company** (cdn.com)
 - distributes gif files
 - uses its authoritative DNS server to route redirect requests

3. **CDN server near client**
 - DNS query for www.cdn.com
 - HTTP request for www.foo.com/sports/sports.html
More about CDNs

routing requests

- CDN creates a “map”, indicating distances from leaf ISPs and CDN nodes
- when query arrives at authoritative DNS server:
 - server determines ISP from which query originates
 - uses “map” to determine best CDN server
- CDN nodes create application-layer overlay network